Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato.
نویسندگان
چکیده
Development, maturation and ripening of fruits has received considerable experimental attention, primarily due to the uniqueness of such processes to plant species and the importance of fruit as a significant aspect of human dietary intake and nutrition. Molecular and genetic analysis of fruit development, and especially ripening of fleshy fruits, has resulted in significant gains in knowledge over recent years, especially with respect to understanding ethylene biosynthesis and response, cell wall metabolism and, to a lesser extent, environmental cues which impact ripening. Tomato has proved to be an excellent model system for the analysis of fruit ripening and development, in part due to the availability of well characterized ripening mutants. Especially interesting are the non-allelic ripening-inhibitor (rin) and non-ripening (nor) mutations which result in non-ripening fruit. Fruit from both mutants are deficient in climacteric respiration and the associated burst in ethylene biosynthesis. Exogenous ethylene does not restore ripening yet does induce expression of ethylene-regulated ripening genes, suggesting both mutations block necessary aspects of ripening outside the realm of ethylene's influence. Both mutations therefore represent genes upstream of ethylene control and additional non-ethylene mediated aspects of ripening. Both genes have recently been isolated through positional cloning strategies and it was shown that ripening is regulated, in part, by a MADS-box transcription factor at the rin locus. Recent development of tools for tomato genomics summarized here have further expanded the potential of the tomato system for the elucidation of genetic regulatory components impacting fruit development, ripening and nutritional quality.
منابع مشابه
Genetic analysis of reproductive development in tomato.
Besides being an important commercial crop, tomato (Solanum lycopersicum L.) constitutes a model species for the study of plant developmental processes. Current research tends to combine classic disciplines such as physiology and genetics with modern approaches coming from molecular biology and genomics with a view to elucidating the biological mechanisms underlying plant architecture, floral t...
متن کاملFruit ripening mutants yield insights into ripening control.
Fruit ripening is a developmental process that is exclusive to plants whereby mature seed-bearing organs undergo physiological and metabolic changes that promote seed dispersal. Molecular investigations into ripening control mechanisms have been aided by the recent cloning of tomato ripening genes that were previously known only through mutation. Advances in the genomics of tomato have provided...
متن کاملGenomics Approaches to Understanding Ripening Control and Fruit Quality in Tomato
The maturation and ripening of fleshy fruits contributes a major component of human diets, nutrition and agricultural activity. While ripening brings about highly desirable changes in fruit character and chemistry in terms of flavor, appearance, texture and nutrition, the advanced stages of ripening lead to sub-optimal fruit quality and eventually post-harvest loss. Fruit biologists have studie...
متن کاملMolecular regulation of fruit ripening
Fruit ripening is a highly coordinated developmental process that coincides with seed maturation. The ripening process is regulated by thousands of genes that control progressive softening and/or lignification of pericarp layers, accumulation of sugars, acids, pigments, and release of volatiles. Key to crop improvement is a deeper understanding of the processes underlying fruit ripening. In tom...
متن کاملIdentification of Linked Markers for Delayed Fruit Ripening in Tomato Using Simple Sequence Repeat (SSR) Markers
Tomato (Solanum lycopersicum L.) is an important vegetable crop and acts as model plant for fruit development studies. Besides that, post-harvest damage is a devastating phenomenon often associated with ripening process in tomato which in turn leads to greater yield loss. Understanding the genetics, molecular and biochemical pathways is the key to overcome the existing situation. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 53 377 شماره
صفحات -
تاریخ انتشار 2002